Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance.

Identifieur interne : 000155 ( Main/Exploration ); précédent : 000154; suivant : 000156

A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance.

Auteurs : Yi-Hsuan Chang [Taïwan] ; Hao-Zhi Yan ; Ruey-Fen Liou

Source :

RBID : pubmed:24965864

Descripteurs français

English descriptors

Abstract

The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response.

DOI: 10.1111/mpp.12166
PubMed: 24965864
PubMed Central: PMC6638464


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance.</title>
<author>
<name sortKey="Chang, Yi Hsuan" sort="Chang, Yi Hsuan" uniqKey="Chang Y" first="Yi-Hsuan" last="Chang">Yi-Hsuan Chang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 106, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 106</wicri:regionArea>
<wicri:noRegion>106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yan, Hao Zhi" sort="Yan, Hao Zhi" uniqKey="Yan H" first="Hao-Zhi" last="Yan">Hao-Zhi Yan</name>
</author>
<author>
<name sortKey="Liou, Ruey Fen" sort="Liou, Ruey Fen" uniqKey="Liou R" first="Ruey-Fen" last="Liou">Ruey-Fen Liou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:24965864</idno>
<idno type="pmid">24965864</idno>
<idno type="doi">10.1111/mpp.12166</idno>
<idno type="pmc">PMC6638464</idno>
<idno type="wicri:Area/Main/Corpus">000166</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000166</idno>
<idno type="wicri:Area/Main/Curation">000166</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000166</idno>
<idno type="wicri:Area/Main/Exploration">000166</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance.</title>
<author>
<name sortKey="Chang, Yi Hsuan" sort="Chang, Yi Hsuan" uniqKey="Chang Y" first="Yi-Hsuan" last="Chang">Yi-Hsuan Chang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 106, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 106</wicri:regionArea>
<wicri:noRegion>106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yan, Hao Zhi" sort="Yan, Hao Zhi" uniqKey="Yan H" first="Hao-Zhi" last="Yan">Hao-Zhi Yan</name>
</author>
<author>
<name sortKey="Liou, Ruey Fen" sort="Liou, Ruey Fen" uniqKey="Liou R" first="Ruey-Fen" last="Liou">Ruey-Fen Liou</name>
</author>
</analytic>
<series>
<title level="j">Molecular plant pathology</title>
<idno type="eISSN">1364-3703</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Immunity, Innate (physiology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phytophthora (pathogenicity)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Immunity (physiology)</term>
<term>Tobacco (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Données de séquences moléculaires (MeSH)</term>
<term>Immunité des plantes (physiologie)</term>
<term>Immunité innée (physiologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Phytophthora (pathogénicité)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Tabac (microbiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Immunité des plantes</term>
<term>Immunité innée</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Immunity, Innate</term>
<term>Plant Immunity</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Data</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24965864</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>09</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1364-3703</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Molecular plant pathology</Title>
<ISOAbbreviation>Mol Plant Pathol</ISOAbbreviation>
</Journal>
<ArticleTitle>A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance.</ArticleTitle>
<Pagination>
<MedlinePgn>123-36</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/mpp.12166</ELocationID>
<Abstract>
<AbstractText>The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response. </AbstractText>
<CopyrightInformation>© 2014 BSPP AND JOHN WILEY & SONS LTD.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Yi-Hsuan</ForeName>
<Initials>YH</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 106, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Hao-Zhi</ForeName>
<Initials>HZ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liou</LastName>
<ForeName>Ruey-Fen</ForeName>
<Initials>RF</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AAP85258</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Plant Pathol</MedlineTA>
<NlmUniqueID>100954969</NlmUniqueID>
<ISSNLinking>1364-3703</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057865" MajorTopicYN="N">Plant Immunity</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">OPEL</Keyword>
<Keyword MajorTopicYN="N">basal immunity</Keyword>
<Keyword MajorTopicYN="N">elicitor</Keyword>
<Keyword MajorTopicYN="N">laminarinase</Keyword>
<Keyword MajorTopicYN="N">systemic acquired resistance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24965864</ArticleId>
<ArticleId IdType="doi">10.1111/mpp.12166</ArticleId>
<ArticleId IdType="pmc">PMC6638464</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 1999 Jun;8(6):1191-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10386869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Jul 15;1419(2):335-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10407084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 3;290(5493):972-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11062127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 1999 Dec;56(11-12):1020-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11212320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2001 Jul;57(6):929-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11423142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jan;29(1):11-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2002 Mar;1(3):232-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12096123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Feb;110(2):365-376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Sep 26;419(6905):399-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12353036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2002 Dec 1;115(Pt 23):4565-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12415001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Dec 16;21(24):6681-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12485989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Jun;16(6):553-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12795381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Feb 12;1696(2):237-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1997;35:235-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 May 27;280(21):20894-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15781460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Aug;67(16):1800-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16430931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 Jun;43(6):430-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Aug;9(4):414-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16753329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jul;18(7):1766-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16766692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Sep;47(6):851-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16889645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2006 Sep;28(9):880-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16937346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Dec;19(12):1348-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17153919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(3):500-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1991 Dec 1;280 ( Pt 2):309-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1747104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Sep;20(9):1031-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17849705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2008 Feb;20(1):10-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18206360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Apr;21(4):480-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18321193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1997 Sep;87(9):899-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Mar;69(4):473-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19083153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:379-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2009 Jul;10(4):547-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19523107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):414-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19608450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2010 Jan 1;9(1):201-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20016268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2010 May;29(5):419-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20204373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 May 18;107(20):9452-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20439716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Aug;11(8):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Aug;23(8):991-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20615110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2010 Sep;114(9):702-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20943180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Feb;24(2):183-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20955078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Apr;155(4):1762-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21311035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):407-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21641854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2011 Sep;91(6):1477-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21785931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 May;7(5):576-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22516811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Sep;17(9):538-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22749315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Dec 11;3:280</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23248636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:839-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23373699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Feb 22;4:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23440336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Jan;164(1):352-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24259685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1989 Aug 15;183(3):555-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2776750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1972 Dec 4;31(2):221-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4647176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Aug 12;78(3):449-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8062387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1993 Sep-Oct;6(5):573-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8274771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1993 Aug 1;293 ( Pt 3):781-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8352747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 Jan;10(1):13-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9002268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Oct 20;416(2):190-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9369212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 Dec;10(9):1045-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9390419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Sep;10(9):1571-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1998 Oct 1;257(1):101-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9799108</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Taïwan</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Liou, Ruey Fen" sort="Liou, Ruey Fen" uniqKey="Liou R" first="Ruey-Fen" last="Liou">Ruey-Fen Liou</name>
<name sortKey="Yan, Hao Zhi" sort="Yan, Hao Zhi" uniqKey="Yan H" first="Hao-Zhi" last="Yan">Hao-Zhi Yan</name>
</noCountry>
<country name="Taïwan">
<noRegion>
<name sortKey="Chang, Yi Hsuan" sort="Chang, Yi Hsuan" uniqKey="Chang Y" first="Yi-Hsuan" last="Chang">Yi-Hsuan Chang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000155 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000155 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24965864
   |texte=   A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24965864" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020